
  

  

Abstract— In the past decade the field of neural interface 

systems has enjoyed an increase in attention from the scientific 

community and the general public, in part due to the enormous 

potential that such systems have to increase the quality of life 

for paralyzed patients. While significant progress has been 

made, serious challenges remain to be addressed from both 

biological and engineering perspectives. A key issue is how to 

optimize the decoding of neural information, such that neural 

signals are correctly mapped to effectors that interact with the 

outside world - like robotic hands and limbs or the patient’s 

own muscles. Here we present some recent progress on tackling 

this problem by applying the latest developments in machine 

learning. Neural data was collected from macaque monkeys 

performing a real-time hand grasp decoding task. Signals were 

recorded via chronically implanted electrodes in the anterior 

intraparietal cortex (AIP) and ventral premotor cortex (F5), 

brain areas that are known to be involved in the 

transformation of visual signals into hand grasping 

instructions. We present a comparative study of different 

classical machine learning methods with an application of 

decoding of hand postures, as well as a new approach for more 

robust decoding. Results suggests that combining data-driven 

algorithmic approaches with well-known parametric methods 

could lead to better performing and more robust learners, 

which may have direct implications for future clinical devices. 

I. INTRODUCTION 

RAWING on a wealth of knowledge about cortical 

movement processing, together with advances in signal 

processing and acquisition that have been made in recent 

years, the field of brain machine interfaces (BMIs) has the 

potential to become a viable assistive tool for patients with 

chronic spinal cord injury, stroke, and other motor 

debilitating diseases. It was demonstrated that 2D and 3D 

hand and arm location can be reconstructed from the activity 

of populations of M1 neurons in macaque monkeys [1]-[4] 

and monkeys can use these 3D control signals to operate a 

robotic arm in order to feed themselves [5]. Our group has 

been working on the development of a system for the 
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specific decoding of hand grasping postures (Fig. 1).  In 

contrast to other studies, our approach aims at decoding 

neural activity in the anterior intraparietal cortex (AIP) and 

ventral premotor cortex (F5), higher-order motor planning 

areas, where movements are represented more abstractly 

than in M1[6],[8],[10]. Signals from these areas were 

interpreted in real time by a decoding algorithm that 

predicted the intended hand movement. The predicted hand 

posture was then fed back visually to the animal in 

conjunction with a small juice reward that was given if the 

prediction matched the movement instruction (Fig. 1). In 

line with the abstract nature of the movement representation 

in premotor and parietal cortex, we make a discrete 

prediction of the final hand posture instead of predicting the 

full continuous trajectory of the hand and arm during reach-

to-grasp.  

II. METHODS 

A. Experimental paradigm 

Two macaque monkeys were trained in a delayed 

grasping task, where they first placed their hands at rest and 

fixated an LED before a handle was presented in one of 5 

different orientations. The animal was instructed with the 

color of an additional LED to grasp the handle either with a 

power grip or a precision grip, and to withhold movement 

execution until the fixation LED dimmed. After a variable 

delay period (700-1100 ms), the animal was allowed to 

make a reach and grasp the handle. Correctly executed trials 

were rewarded with a small amount of juice.  

In Search of More Robust Decoding Algorithms for Neural 

Prostheses, a Data Driven Approach 

Erk Subasi, Benjamin Townsend, Hansjörg Scherberger 

D 
 

Fig. 1: Decoding of hand grasping signals in AIP and F5. 
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B. Setup 

After successful training, floating micro-electrode arrays 

(MicroProbe Inc, Gaithersburg, MD, USA) with 16 

monopolar electrodes were permanently implanted in AIP (2 

x 16) and F5 (3 x 16) of a first animal (Z). In a second 

animal (S), we used 32-electrode arrays with similar 

specifications and implanted 2 arrays in each area. From 

these electrode arrays, we recorded action potentials (spikes) 

from many individual neurons while the monkey performed 

the grasping task. A typical recording session gave between 

20-30 single- and multi-units in monkey Z and around 100 

units in monkey S, which were significantly tuned to the 

parameters of the task (grip type or grip orientation, each 

tested by 1-way ANOVA, p<0.05). Most of these “units” 

comprised action potentials from several cells around the 

electrode that could not be assigned to individual neurons by 

online spike sorting, and were essentially treated as “multi-

unit” signals. A minority of channels gave clearly isolated 

“single units” as evidenced by the inter-spike interval 

histogram and waveform homogeneity. We will examine the 

differences between encoding and decoding from single unit 

versus multi unit signals in a forthcoming report. Neural 

signals were sampled using a Cerebus Neural Signal 

Processor (Cyberkinetics Inc, Foxborough, MA) and 

streamed to separate decoding and recording computers. 

Spike sorting was conducted online by manually setting 

time-amplitude discrimination windows for animal Z, and 

using proprietary automated spike-sorting features of the 

Cerebus system for animal S. 

C.  Neural Coding Scheme 

Our goal in this work was to compare different machine 

learning approaches on the same data set in an offline 

analysis. For the sake of simplicity, we used here only spike 

rates that were computed from online-sorted spike counts. 

However, one should note that other signal modalities like 

local field potential activity, as well as other encoding 

schemes like temporal coding, are likely to contain 

additional information that could be utilized in neural 

prosthetic applications.  

III. MOTIVATION 

A. Decoding Problem & Common Approaches  

If we want to decode neural information optimally, a good 

point to start with is to ask: “How does the brain actually 

decode this information?” Population coding plays well with 

stochastic and distributed characteristics of neurons and 

matches some of the nice properties of motor cortical areas. 

First of all, population coding has some built-in noise 

compensation characteristics and is robust. It also gives rise 

to short-term memory in the system and can instantiate 

complex and non-linear functions [9]. An early-developed 

population coding mechanism is “population vector 

analysis” which is essentially a cosine function fit to the 

observed activity direction [7]. The population vector 

algorithm enjoyed substantial success until maximum 

likelihood estimation (MLE) approaches turned out to be 

superior in capturing the underlying probability 

distributions. Being a parametric method, MLE usually 

assumes Poisson statistics for motor neuron firing rates and 

for the parameter estimation to be tractable, scientists make 

the strong assumption that the individual neurons are firing 

independently. Thus, we reach Naïve Bayesian Classifiers, 

which are widely used in BMI community for discrete 

predictions. 

B. Motivation 

Naïve Bayesian Classifiers can be trained quite efficiently 

in a supervised setting and despite their non-realistic 

independence assumptions and parametric nature they 

perform very well in cortical signal decoding and are treated 

to date as state of the art in many settings. But frequently, 

analysis of multiple simultaneously recorded spike trains 

with these naive assumptions will raise the legitimate 

question whether the data is treated adequately. The absence 

of well-developed statistical methods for analyzing multiple 

point processes is the main concern for practitioners with 

classical statistics background. Here we address this issue 

from a data driven perspective, where we define the 

decoding goal as having the best prediction accuracy, 

without spending much effort on optimal modeling of the 

data source.  

C. Two Cultures in Formal Predictions 

There are two broad categories of approach towards 

generating predictions from neural data. The first, “Data 

modeling approach” utilizes an underlying model that is 

constructed a-priori to generate data. This approach relies 

heavily on parameter estimation techniques and model 

validation that is achieved usually by goodness-of-fit tests. 

However, one should be careful in the choice of estimators 

while keeping in mind that even significant results may be 

misleading if the assumptions regarding the initial model are 

not appropriate.  

In contrast, the “Algorithmic modeling approach” requires 

no a-priori model for the underlying data generation. 

Instead, black-box learners work on all available data and 

validation is checked by predictive accuracy. One should be 

particularly careful about over-fitting when working with 

this set of algorithms. Being strong learners, this family 

usually provides better prediction performance as compared 

to model-based procedures, but they suffer from lack of 

explanatory power.  

The main motivation of this work was to bring some of 

the well known methods from data modeling and 

algorithmic modeling together, first for the purposes of 

comparison and second to investigate a possible combined 

approach.  

IV. RESULTS 

To that extent, we created a testing-platform, using the 

open source JAVA package RapidMiner [11], where 

different thoroughly tested algorithms can be plugged in and 

compared in the same setup in a standard way.
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TABLE I 

PERFORMANCE OF DECODING FOR, ANIMAL S, THE BEST 3 PERFORMANCES ARE HIGHLIGHTED FOR EACH COLUMN 

Record IDs :  A0515 A0519 A0520 A0525 A0526 A0527 A0528 A0508   AVERAGE 

Generic Algorithms                     
NaiveBayes-Poisson 0.391 0.581 0.514 0.5 0.654 0.582 0.758 0.632  0.577 

NaiveBayes-Gaussian 0.449 0.602 0.543 0.5 0.605 0.532 0.697 0.658  0.573 

BayesianLogisticRegression 0.406 0.581 0.476 0.386 0.444 0.468 0.689 0.526  0.497 

BayesNet-K2 0.449 0.398 0.39 0.341 0.37 0.481 0.409 0.5  0.417 

DecisionTree 0.304 0.366 0.343 0.295 0.259 0.354 0.22 0.303  0.306 

NaiveBayesTree 0.246 0.269 0.286 0.386 0.185 0.278 0.303 0.303  0.282 

kNN 0.435 0.462 0.457 0.386 0.42 0.481 0.538 0.539  0.465 

Perceptron 0.464 0.548 0.41 0.318 0.346 0.494 0.636 0.368  0.448 

MultiLayerPerceptron 0.507 0.484 0.524 0.364 0.58 0.443 0.72 0.658  0.535 

LinearSVM 0.464 0.548 0.667 0.341 0.63 0.506 0.705 0.632  0.562 

RbfSVM 0.536 0.57 0.648 0.432 0.617 0.468 0.697 0.645  0.577 

Ensemble Methods                     
Adaboost-NaiveBayesPoisson 0.362 0.538 0.543 0.5 0.667 0.544 0.72 0.563  0.555 

Adaboost-NaiveBayesGaussian 0.406 0.602 0.552 0.5 0.617 0.544 0.697 0.589  0.563 

Adaboost-DecisionTree 0.304 0.344 0.343 0.273 0.235 0.367 0.205 0.321  0.299 

Adaboost-kNN 0.391 0.462 0.39 0.318 0.395 0.38 0.53 0.457  0.416 

Adaboost-Perceptron 0.333 0.505 0.333 0.318 0.37 0.38 0.606 0.458  0.413 

Adaboost-LinearSVM 0.478 0.581 0.476 0.341 0.519 0.392 0.682 0.502  0.496 

BayesianBoosting-NaiveBayesPoisson 0.391 0.581 0.514 0.5 0.654 0.582 0.75 0.602  0.572 

BayesianBoosting-DecisionTree 0.449 0.409 0.362 0.295 0.284 0.342 0.402 0.398  0.368 

BayesianBoosting-LinearSVM 0.478 0.581 0.476 0.341 0.519 0.392 0.682 0.533  0.500 

MultiBoosting-NaiveBayesGaussian 0.493 0.602 0.543 0.455 0.58 0.532 0.697 0.578  0.560 

MultiBoosting-DecisionTree 0.319 0.516 0.486 0.432 0.457 0.405 0.477 0.404  0.437 

Proposed Methods                     
DecisionTree - NB & SVM 0.507 0.634 0.623 0.477 0.605 0.582 0.742 0.645  0.602 

Neural Network - NB & SVM 0.522 0.624 0.592 0.477 0.593 0.544 0.758 0.645   0.594 

 
 

TABLE II 
PERFORMANCE OF DECODING FOR, ANIMAL Z, THE BEST 3 PERFORMANCES ARE HIGHLIGHTED FOR EACH COLUMN 

Record IDs : B0206 B0208 B0214 B0523 B0626 B0729 B0731 B0828   AVERAGE 

Generic Algorithms                     

NaiveBayes-Poisson 0.317 0.336 0.360 0.244 0.298 0.331 0.261 0.335  0.310 

NaiveBayes-Gaussian 0.331 0.353 0.377 0.225 0.316 0.344 0.261 0.341  0.318 

BayesianLogisticRegression 0.245 0.387 0.333 0.206 0.237 0.318 0.228 0.293  0.281 

BayesNet-K2 0.266 0.395 0.360 0.169 0.202 0.248 0.152 0.263  0.257 

DecisionTree 0.129 0.387 0.228 0.225 0.246 0.248 0.272 0.281  0.252 

NaiveBayesTree 0.216 0.193 0.158 0.163 0.167 0.242 0.250 0.192  0.197 

kNN 0.317 0.294 0.289 0.225 0.228 0.293 0.272 0.311  0.279 

Perceptron 0.295 0.429 0.289 0.200 0.289 0.261 0.207 0.269  0.280 

MultiLayerPerceptron 0.338 0.328 0.368 0.256 0.246 0.338 0.304 0.317  0.312 

LinearSVM 0.302 0.294 0.325 0.250 0.237 0.306 0.272 0.269  0.282 

RbfSVM 0.345 0.353 0.368 0.269 0.246 0.331 0.283 0.359  0.319 

Ensemble Methods                     

Adaboost-NaiveBayesPoisson 0.295 0.420 0.325 0.244 0.298 0.293 0.293 0.335  0.313 

Adaboost-NaiveBayesGaussian 0.259 0.403 0.298 0.225 0.316 0.293 0.250 0.341  0.298 

Adaboost-DecisionTree 0.151 0.345 0.237 0.213 0.263 0.261 0.272 0.263  0.251 

Adaboost-kNN 0.245 0.092 0.281 0.094 0.096 0.248 0.174 0.281  0.189 

Adaboost-Perceptron 0.216 0.387 0.289 0.225 0.254 0.287 0.098 0.240  0.249 

Adaboost-LinearSVM 0.252 0.403 0.289 0.244 0.263 0.287 0.293 0.311  0.293 

BayesianBoosting-NaiveBayesPoisson 0.288 0.353 0.307 0.256 0.316 0.331 0.261 0.257  0.296 

BayesianBoosting-DecisionTree 0.288 0.328 0.377 0.238 0.254 0.306 0.261 0.317  0.296 

BayesianBoosting-LinearSVM 0.252 0.403 0.289 0.225 0.254 0.287 0.293 0.305  0.289 

MultiBoosting-NaiveBayesGaussian 0.353 0.370 0.368 0.250 0.281 0.331 0.293 0.323  0.321 

MultiBoosting-DecisionTree 0.259 0.387 0.333 0.294 0.316 0.306 0.304 0.287  0.311 

Proposed Methods                     

DecisionTree - NB & SVM 0.327 0.378 0.351 0.276 0.325 0.338 0.279 0.377  0.331 

Neural Network - NB & SVM 0.295 0.328 0.368 0.238 0.289 0.350 0.283 0.353   0.313 

 

 
TABLE III 

VARIANCE OF DECODING PERFORMANCE AMONG RECORDING DAYS 

 Animal Z Animal S 

NaiveBayes-Poisson 0.00160 0.01232 

RbfSVM 0.00218 0.00861 

DecisionTree - NB & SVM 0.00152 0.00685 
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In particular, we tested: Naïve Bayes classifiers with 

Poisson and Gaussian data assumptions, Perceptrons, 

Decision Trees, Logistic Regression Classifiers, k-Nearest 

Neighbor classifiers, Naïve Bayes trees, Multi Layer 

Perceptrons (classic back-propagation neural networks), and 

Linear / Radial Basis Function (RBF) Support Vector 

Machines (SVM). We also implemented some widely used 

ensemble method approaches, given the tremendous 

attention they have drawn in the last decade. Referring to our 

discussion on two cultures for statistical modeling, all our 

non-Bayesian algorithms were closer to the algorithmic 

modeling family. Moreover, Naïve Bayesian classifier with a 

Poisson distribution assumption is our benchmark because of 

its frequent use. 

Due to space constraints, it is not feasible to provide 

implementation details of all learners here. However, as a 

rule of thumb, we did not extensively optimize parameters of 

individual learners, but always tried to stay in a reasonable 

parameter space and run simple optimization routines on 

out-of-sample data where applicable. The reported results 

are decoding accuracies out of ten conditions with 10-fold 

cross validations. We present decoding results with 24 

different learning methods from 8 recording sessions from 

each animal (Table I, Table II). There is a first set of 11 

algorithms, which is selected from a wide variety of widely 

used machine learning methods. Another set of 11 

algorithms are constructed using ensemble methods which 

utilize some learners from the previous set as their base 

learners. Finally, we propose two additional algorithms in an 

attempt to combine data modeling and algorithmic modeling 

approaches for obtaining more robust classifications.  

Looking at the last columns of Table I and Table II, to the 

average decoding accuracies, the first thing to notice is that 

there is a substantial difference for both animals (0.60 vs. 

0.33 for best performing classifiers). This is not surprising 

looking at Fig.2. Recordings from Animal S are significantly 

richer in terms of the number of tuned units. 

 

 
Fig. 2: Number of significantly tuned units for both animals. 

 

Further analyzing the tables, we observe that Naïve Bayes 

share the top rank with RBF-SVMs among generic 

algorithms. From ensemble methods MultiBoosting using 

Naïve Bayes as base learner performs best especially for the 

second animal. Finally, the proposed combined approach 

(Decision Tree – NB & SVM) beats both the simple 

algorithms and ensemble methods in terms of average 

decoding accuracy. 

V. DISCUSSION 

It is important to note that Naïve Bayes classifiers are 

among the best performers. In addition, some strong 

classifiers do not perform as well, especially ensemble 

methods that utilize Naïve Bayes classifiers as base learners. 

This brings us to the conclusion that the Poisson firing rate 

model assumption is indeed close to reality and Naïve 

Bayesian classifiers are already doing well in capturing 

population coding characteristics of motor cortical areas. 

Furthermore, SVMs perform identical to Naïve Bayes in 

terms of average performance while they both show 

different characteristics in individual recordings. Thus, one 

can speculate that once population correlations increase or 

the firing characteristics of individual neurons deviate from 

Poisson, a strong data driven method like SVM might 

outperform Naïve Bayes classifiers. Motivated with this line 

of thinking, we proposed a two-level classifier that attempts 

to combine the best features of both approaches. In the base 

level both SVMs and Naïve Bayes classifiers learn the data 

independently. At the top level, there is a final decision 

maker, either a decision tree or neural network, that has 

access to the outputs of both classifiers and to the input data. 

This approach indeed turned out to be the best performing 

classifier in our analysis. Furthermore, it also had minimum 

variance among the best performing approaches (across 

daily sessions), i.e. it is a more robust learner (Table III). 

Thus, we believe that by providing an average higher 

performance more robustly, 2-level classifiers may have 

important implications for future clinical applications. 
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